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Abstract. As is well known, Lovfisz Local Lemma implies that every d-uniform d-regular hyper- 
graph is 2-colorable, provided d > 9. We present a different proof of a slightly stronger result; every 
d-uniform d-regular hypergraph is 2-colorable, provided d > 8. 

1. Introduction 

A d-uniform d-regular hypergraph is a hypergraph in which every edge contains 
precisely d vertices and every vertex is contained in precisely d edges. It is well 
known (see, e.g., [4], [6]) that for d > 9 each such hypergraph is 2-colorable, i.e., 
there is a 2-coloring of its vertices with no monochromatic edges. To the best of 
our knowledge, the only known proof of this fact is the one that applies the Lovhsz 
Local Lemma to show that a random vertex coloring of the given hypergraph with 
2 colors contains no monochromatic edges with positve (though very small) prob- 
ability. Let D be the set of all positive integers d, such that every d-uniform d-regular 
hypergraph is 2-colorable. One can easily check that if d ~ D then d' e D for every 
d' > d. Indeed, if H' --- (V, E') is a d'-uniform d'-regular hypergraph, then by Hall's 
theorem (cf. e.g., [5]), every edge e' e E' contains an edge e(e') c e' of cardinality d 
such that the hypergraph H = (V, {e(e'): e' e E'}) is d-uniform and d-regular. The 
2-colorability of H implies that of H'. 

Put fi = min{d: d e D). Then 

4 < 6 < 9 .  (1.1) 

The upper bound follows from the result, stated above, that every 9-uniform 
9-regular hypergraph is 2 colorable. The lower bound is a consequence of the fact 
that the hypergraph whose vertices are the seven points of the Fano plane and 
whose edges are the seven lines of this plane is 3-uniform, 3-regular and not 
2-colorable. 

In this note we slightly improve inequality (1.1) by proving the following 
theorem which gives 6 < 8; 
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Theorem 1.1. For every d > 8, every d-uniform d-regular hypergraph is 2 colorable. 

The most interesting feature of this result is not its statement, which is only a 
slight improvement of (1.1), but its proof, which is completely different from the 
probabilistic one that gives 6 < 9. It seems plausible that in fact every 4-uniform 
4-regular hypergraph is 2-colorable, i.e., ~ = 4, but at the moment we are unable 
to improve the estimate 6 < 8 given by Theorem 1.1. 

2. Proofs 

A (1, 2)-factor of a graph G = (V, E) is a spanning subgraph F of G, every connected 
component of which is either a cycle or an isolated edge. Let us call such an F even 
if the number of its connected components is even, and odd otherwise. 

The following lemma seems interesting in its own right. Its proof is very similar 
to the proof of the main result of Friedland in [3]. 

Lemma 2.1. For every d > 8, every d-regular simple graph contains an even (1, 2)- 
factor and an odd (1, 2)-factor. 

Proof. Let G = (V,E) be a d regular simple graph on a set V ofn vertices. Let A = 
(a,v) . . . .  v be the adjacency matrix of G given by au~ = 1 if uv ~ E and a,v = 0 
otherwise. One can easily check that the permanent, perm(A), of A is just the total 
number of (1, 2)-factors of G. Similarly, the determinant, det(A), of A is precisely 
( -  1)" times the difference between the number of even (1, 2)-factors of G and that 
of odd (1, 2)-factors of G. By the well known Van-der-Waerden conjecture, proved 
by Falikman and Egorichev ([2], [l-l), 

perm(A) > d"' n!  > . 
- -  n n  - -  

By the classical Hadamard Inequality 

Idet AI _< d "/2. 

As d >_ 8 > e 2, we conclude that perm(A) > ]det A[ and hence both the number 
of even (1, 2)-factors of G and that of odd (1, 2)-factors of G are positive. This 
completes the proof of the lemma. []  

Corollary 2.2. For every d >_ 8, every d-regular simple bipartite graph G contains a 
(1, 2)-factor, with one component being a cycle of length 0(rood 4), and all the other 
components being isolated edges. 

Proof. Clearly G has an even number 2m of vertices. By Lemma 2.1, G contains an 
even (1, 2)-factor and an odd (1, 2)-factor. Let f be a (1, 2)-factor of G whose number 
of connected components is not congruent to m modulo 2. As G is bipartite, each 
connected component of F has an even number of vertices. Let fo be the number 
of these components whose size is 0(rood 4), and let f2 be the number of these 
components whose size is 2(rood 4). Clearly 2f2 - 2re(moO 4), i.e., f2 - re(rood 2). 
By the choice of F this implies that fo is odd, and in particular F contains a 
component C of size 0(rood 4). By omitting every second edge from each component 
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of F other than C that has more than one edge, we get a (1, 2)-factor of G with the 
desired properties. []  

We can now prove Theorem 1.1. Suppose d > 8, and let H = (V(H),E(H)) be a 
d-uniform d-regular hypergraph. Clearly we may assume that H is connected. Let 
G be the bipartite graph on the classes of vertices V(H)and E(H), in which v ~ V(H) 
is adjacent to e 6 E(H) iff, in H, e contains v. Clearly G is simple, connected and 
d-regular. By Corollary 2.2, G contains a (1, 2)-factor F, whose connected compo- 
nents are C o, C1, C2 . . . . .  C, where C O is a cycle containing an even number of 
members of V(H) and an equal even number of members of E(H), and each other 
Ci is an edge in G joining some v~ ~ V(H) to some e, E E(H). As the number of 
members of V(H) in C o is even, we can color them alternately by red and blue, such 
that each member  of E(H) in Co will have a red and a blue neighbor in Co. Notice 
that this partial coloring of V(H) satisfies the following condition: 

If for some i, 1 < i _< r, vi is already colored, then e, has in G (2.1) 
both a red neighbor and a blue neighbor. 

Indeed, condition (2.1) is satisfied trivially, as no v, is colored. Let us extend the 
given coloring to some maximal coloring l satisfying (2.1), i.e., for any additional 
coloration of some uncolored v~, condition (2.1) will be violated. We claim that I is 
a coloring of the whole set I1(11). To see this assume that it is not, and that some 
vi's (1 < i < r) are not colored. Let R be the induced subgraph of G on 0 {C~: v, is 
not colored}. As G is connected, there are edges of G that join vertices of R to 
vertices not in R. However, since G is regular and bipartite, this implies that there 
is some i with C~ ~ R, such that there is an edge from e~ to some vertex not in R, 
i.e., to some member  v ~ V(H) which is already colored under the partial coloring 
l. We can now color v~ blue if V is colored red and red if v is colored blue to obtain 
a new partial coloring l' satisfying condition (2.1). This contradicts the maximality 
of I and establishes the claim. 

Returning to the hypergraph H, we now color each of its vertices v ~ V(H) by 
the color it received under I. As in G each vertex corresponding to an edge e E E(H) 
has both a red neighbor and a blue neighbor, the above coloring of the hypergraph 
H contains no monochromat ic  edges. This completes the proof of Theorem I.l. []  
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